48 research outputs found

    Analysis of Discrete L2L^2 L 2 Projection on Polynomial Spaces with Random Evaluations

    Get PDF
    We analyze the problem of approximating a multivariate function by discrete least-squares projection on a polynomial space starting from random, noise-free observations. An area of possible application of such technique is uncertainty quantification for computational models. We prove an optimal convergence estimate, up to a logarithmic factor, in the univariate case, when the observation points are sampled in a bounded domain from a probability density function bounded away from zero and bounded from above, provided the number of samples scales quadratically with the dimension of the polynomial space. Optimality is meant in the sense that the weighted L2L^2 L 2 norm of the error committed by the random discrete projection is bounded with high probability from above by the best L∞L^\infty L ∞ error achievable in the given polynomial space, up to logarithmic factors. Several numerical tests are presented in both the univariate and multivariate cases, confirming our theoretical estimates. The numerical tests also clarify how the convergence rate depends on the number of sampling points, on the polynomial degree, and on the smoothness of the target function

    I Going Away. I Going Home. : Austin Clarke\u27s Leaving this Island Place

    Get PDF
    Austin Clarke’s “Leaving This Island Place” is one of scores of Caribbean autobiographical works that focus on a bright, young, lower-class islander leaving his/her small island place and setting out on “Eldorado voyages.” The narrative of that journey away from home to Europe or Canada or the United States and the later efforts to return may be said to be the Caribbean story, as suggested in the subtitle of Wilfred Cartey’s study of Caribbean literature, Whispers from the Caribbean: I Going Away, I Going Home, which argues that while in Caribbean literature there is much movement away, there is also a body of literature in which “the notion of ‘away’ and images of movement out are replaced by images of return” (xvi). Traditionally, however, the first autobiographical works, such as George Lamming’s In the Castle of My Skin, V. S. Naipaul’s A House for Mr. Biswas, Merle Hodge’s Crick Crack, Monkey, Jamaica Kincaid’s Annie John, Michelle Cliff’s No Telephone to Heaven, Edwidge Danticat’s Breath, Eyes, Memory, and Elizabeth Nunez’s Beyond the Limbo Silence, have focused on the childhood in the Caribbean and the journey away—or at least the preparation for that journey. Such is the case with Clarke’s “Leaving This Island Place.

    On the constraints violation in forward dynamics of multibody systems

    Get PDF
    It is known that the dynamic equations of motion for constrained mechanical multibody systems are frequently formulated using the Newton-Euler’s approach, which is augmented with the acceleration constraint equations. This formulation results in the establishment of a mixed set of partial differential and algebraic equations, which are solved in order to predict the dynamic behavior of general multibody systems. The classical resolution of the equations of motion is highly prone to constraints violation because the position and velocity constraint equations are not fulfilled. In this work, a general and comprehensive methodology to eliminate the constraints violation at the position and velocity levels is offered. The basic idea of the described approach is to add corrective terms to the position and velocity vectors with the intent to satisfy the corresponding kinematic constraint equations. These corrective terms are evaluated as function of the Moore-Penrose generalized inverse of the Jacobian matrix and of the kinematic constraint equations. The described methodology is embedded in the standard method to solve the equations of motion based on the technique of Lagrange multipliers. Finally, the effectiveness of the described methodology is demonstrated through the dynamic modeling and simulation of different planar and spatial multibody systems. The outcomes in terms of constraints violation at the position and velocity levels, conservation of the total energy and computational efficiency are analyzed and compared with those obtained with the standard Lagrange multipliers method, the Baumgarte stabilization method, the augmented Lagrangian formulation, the index-1 augmented Lagrangian and the coordinate partitioning method.The first author expresses his gratitude to the Portuguese Foundation for Science and Technology through the PhD grant (PD/BD/114154/2016). This work has been supported by the Portuguese Foundation for Science and Technology with the reference project UID/EEA/04436/2013, by FEDER funds through the COMPETE 2020 – Programa Operacional Competitividade e Internacionalização (POCI) with the reference project POCI-01-0145-FEDER-006941.info:eu-repo/semantics/publishedVersio

    Parameter Estimation In Discontinous Descriptor Models

    No full text
    this paper. The Gauß--Newton iteration is stopped when a scaled norm of the inrements drops below 10 \Gamma3 . Starting with the values of m 4 = 800 kg, l 1 = 5 m, and l 2 = 2:3 m and using 20 equally spaced multiple shooting nodes, we obtain the following estimations for the parameters and 95% confidence intervals

    Approximation of Quantities of Interest in Stochastic PDEs by the Random Discrete L2 Projection on Polynomial Spaces

    No full text
    In this work we consider the random discrete L2L^2 projection on polynomial spaces (hereafter RDP) for the approximation of scalar quantities of interest (QOIs) related to the solution of a partial differential equation model with random input parameters. In the RDP technique the QOI is first computed for independent samples of the random input parameters, as in a standard Monte Carlo approach, and then the QOI is approximated by a multivariate polynomial function of the input parameters using a discrete least squares approach. We consider several examples including the Darcy equations with random permeability, the linear elasticity equations with random elastic coefficient, and the Navier--Stokes equations in random geometries and with random fluid viscosity. We show that the RDP technique is well suited to QOIs that depend smoothly on a moderate number of random parameters. Our numerical tests confirm the theoretical findings in [G. Migliorati, F. Nobile, E. von Schwerin, and R. Tempone, Analysis of the Discrete L2L^2 Projection on Polynomial Spaces with Random Evaluations, MOX report 46-2011, Politecnico di Milano, Milano, Italy, submitted], which have shown that, in the case of a single uniformly distributed random parameter, the RDP technique is stable and optimally convergent if the number of sampling points is proportional to the square of the dimension of the polynomial space. Here optimality means that the weighted L2L^2 norm of the RDP error is bounded from above by the best L∞L^\infty error achievable in the given polynomial space, up to logarithmic factors. In the case of several random input parameters, the numerical evidence indicates that the condition on quadratic growth of the number of sampling points could be relaxed to a linear growth and still achieve stable and optimal convergence. This makes the RDP technique very promising for moderately high dimensional uncertainty quantification

    A WEB-BASED INTERACTIVE TOOL FOR MULTI-RESOLUTION 3D MODELS OF A MAYA ARCHAEOLOGICAL SITE

    No full text
    Continuous technological advances in surveying, computing and digital-content delivery are strongly contributing to a change in the way Cultural Heritage is "perceived": new tools and methodologies for documentation, reconstruction and research are being created to assist not only scholars, but also to reach more potential users (e.g. students and tourists) willing to access more detailed information about art history and archaeology. 3D computer-simulated models, sometimes set in virtual landscapes, offer for example the chance to explore possible hypothetical reconstructions, while on-line GIS resources can help interactive analyses of relationships and change over space and time. While for some research purposes a traditional 2D approach may suffice, this is not the case for more complex analyses concerning spatial and temporal features of architecture, like for example the relationship of architecture and landscape, visibility studies etc. The project aims therefore at creating a tool, called "QueryArch3D" tool, which enables the web-based visualisation and queries of an interactive, multi-resolution 3D model in the framework of Cultural Heritage. More specifically, a complete Maya archaeological site, located in Copan (Honduras), has been chosen as case study to test and demonstrate the platform’s capabilities. Much of the site has been surveyed and modelled at different levels of detail (LoD) and the geometric model has been semantically segmented and integrated with attribute data gathered from several external data sources. The paper describes the characteristics of the research work, along with its implementation issues and the initial results of the developed prototype

    Parameter Estimation In Discontinuous Descriptor Models

    No full text
    corecore